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Abstract. We investigate the relationship between the effective diffusivity and effective drift
of a particle moving in a random medium. The velocity of the particle combines a white noise
diffusion process with a local drift term that depends linearly on the gradient of a Gaussian
random field with homogeneous statistics. The theoretical analysis is confirmed by numerical
simulation.

For the purely isotropic case the simulation, which measures the effective drift directly in
a constant gradient background field, confirms the result, previously obtained theoretically, that
the effective diffusivity and effective drift are renormalized by the same factor from their local
values. For this isotropic case we provide an intuitive explanation, based on aspatial average
of local drift, for the renormalization of the effective drift parameter relative to its local value.

We also investigate situations in which the isotropy is broken by the tensorial relationship
of the local drift to the gradient of the random field. We find that the numerical simulation
confirms a relatively simple renormalization group calculation for the effective diffusivity and
drift tensors.

1. Introduction

A much studied problem in physics is that of the diffusion of a particle in a random
environment. This problem encompasses areas ranging from turbulent diffusion to phase
space descriptions of the dynamics of complex disordered systems such as spin glasses.
The standard Langevin equation describing such systems is

ẋ = u + U (x) + w(t) (1)

wherew(t) is a white noise of zero mean with correlation function

〈wi(t)wj (t
′)〉 = 2κ0

ij δ(t − t ′) (2)

and U is a random quenched velocity field with zero mean andu is a constant applied
velocity. In this paper we shall concentrate on examples where the asymptotic diffusion is
normal, that is we expect

lim
t→∞〈xi(t)xj (t)〉c = 2κij t (3)

where the suffixc indicates the cumulant part of the correlator and

lim
t→∞〈xi(t)〉 = ue

i t . (4)
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The angle brackets indicate an average over the white-noise ensemble, and where appropriate
over the ensemble of samples of the random medium. Hereκij andue

i are the bulk diffusivity
tensor and bulk drift for the random medium. We shall not examine the case where there
is anomalous diffusion; this is of course a very interesting case which has been studied
extensively (see for example [1]) with the object of determining the anomalous exponents
for the diffusion and is successfully tackled via renormalization group techniques.

A problem of great interest concerns the computation of effective parameters for a
diffusion process that combines molecular diffusion with a drift term linearly dependent
on the gradient of a random scalar field with spatially homogeneous statistics. In the case
where the system, including the statistical properties of the random field, is isotropic, it
has been shown, on the basis of plausible but not completely established assumptions,
that the effective long-range diffusivity is accurately predicted by a renormalization group
calculation (RGC) [2–4]. The result, which is embodied in a very simple formula, is
confirmed by numerical simulation to high accuracy. The result is also consistent with the
straightforward perturbation expansion to two-loop order but remains accurate beyond the
applicability of the expansion to this order [3, 5].

An important parameter relevant to the long-time behaviour of the system, that has not
generally been studied, is the value of the effective drift parameter, or tensor, that determines
the average drift of particles in an imposed large-scale field gradient. A feature of the
isotropic case, respected by the RGC, is that this effective drift coefficient is renormalized
relative to its local value by the same factor as the effective diffusivity is renormalized
relative to the molecular diffusivity [2–5] in the isotropic case. By including an appropriate
constant drift term in the original molecular diffusion process we confirm in this paper,
directly by numerical simulation, the equality of the two renormalization factors. We also
give an intuitive explanation in terms of spatial averages, of why one should expect that
the drift coefficient be renormalized.

We also study the effect of anisotropy on the relationship between bulk drift and
diffusivity. Isotropy can break down for three reasons. First, the statistics of the random
field may not be isotropic. We have investigated this in a previous paper [6] and shown
that, although the predictions of the RGC are still reasonably accurate, there are emerging
disparities with the results of the numerical simulation. Such an outcome is to be expected
since the results of the RGC were, in this case, shown to differ from straightforward
perturbation theory at two-loop order. Second, the molecular diffusion tensor may be non-
isotropic and third, the same may be true of the local drift tensor. It is this third possibility
that we investigate in this paper by numerical simulation, comparing the results with the
predictions of the appropriate RGC. The results actually agree rather well, suggesting that
the isotropy of the random field statistics is an important condition for the success of the
RGC.

It is convenient for the purpose of discussing anisotropy to consider the most general
diffusion equation of the class in which we are interested. It has the form

∂P

∂t
= ∂i(κ

0
ij ∂j − λ0

ij ∂jφ(x) − ui)P . (5)

HereP is the probability density of a particle moving according to the equation

ẋi = λ0
ij ∂jφ(x) + ui + wi(t) (6)

wherew is the white noise defined in the introduction. A possible physical origin for the drift
term is the electric field imposed on a diffusing ion in the presence of randomly positioned
charged impurities. In that caseφ is, up to a normalization, the random electrostatic potential
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produced by the impurities. The termui represents a constant drift term. In appropriate
units we would expect the drift to be given by

ui = λ0
ij gj (7)

wheregi is a uniform (electric) field. If, in the absence of the constant drift term, a system of
finite volume is to achieve a currentless Gibbs equilibrium state with a probability density,
P0(x), that satisfies

P0(x) = N exp(βφ(x)) (8)

with N the normalization factor andβ the effective inverse temperature, it is necessary that

κij = βλij . (9)

This equality is often referred to as the fluctuation dissipation relation (FDR) [8]. Although
such a local fluctuation dissipation relation is necessary if a Gibbs equilibrium state is to be
achieved, it does not guarantee this outcome. (Some systems obeying the local FDR may
never reach equilibrium and hence may never satisfy the fluctuation dissipation theorem
(FDT); this is beyond the scope of our paper but the interested reader may consult [12] for
example.)

The special case of equation (5), in which equation (9) holds, is the one that has been
studied most, mainly in the isotropic case, precisely because it leads to a Gibbs equilibrium
distribution. A priori there is no reason why such a relation should apply in a random
medium. Indeed if there are forces not derived from a potential, in three dimensions,
the random flow will contain an incompressible component and the steady state will have
microcurrents. It is interesting to note that in spin glass dynamics the FDR is obeyed but
below the critical temperature the FDT is violated; however, if a non-potential term is added
to the drift (as part of a Langevin process) the low-temperature phase has been reported to
be drastically changed [13], even for small perturbations. Therefore in this paper we shall
consider both the cases where the FDR holds and also where it is violated.

The main results of this paper are that when the FDR holds at the level of the bare
parameters (i.e. microscopically) then the effective renormalized parameters obtained after
averaging over the random field also obey the FDR, at least by the evidence of a perturbative
analysis and from our numerical simulations. This is perhaps a more comforting than
surprising result. However, we shall also see that for slight, in the perturbative sense,
deviations from the FDR, a renormalization group analysis suggests that the effective or
bulk parameters are renormalized back towards consistency with the FDR. This suggests that
in certain systems where the microscopic dynamics violates the FDR, one may nevertheless
measure bulk parameters that do obey the FDR quite closely.

The flow of the effective parameters in the renormalization group analysis between their
microscopic and bulk values may be viewed as a progressive coarse graining of the system.
Indeed the Langevin equation describing the microscopic dynamics must itself have been
derived from the coarse graining of a more physically realistic microscopic dynamics. Hence
our results strongly suggest that the effect of coarse graining in the type of system we have
examined is to restore the FDR if the microscopic dynamics obeys the FDR sufficiently
closely.

2. Dynamics from the Green functions

In the study of diffusions a standard technique is to extract information about the diffusion
from the statics—the analysis is quite standard [1, 4]. The equation for the static Green
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function corresponding to a unit source atx′ is

∂i(κ
0
ij ∂j − λ0

ij ∂jφ(x) − ui)G(x, x′) = −δ(x − x′). (10)

The effective Green function obtained after averaging over the random ensemble of flows
we denote byG(x−x′). It is simpler to study this function in terms of its Fourier transform.
It has the form

G̃(k) = [κ0
mnkmkn − 6(k) + iujWj (k)]−1. (11)

At small k the irreducible two-point function6(k) satisfies

6(k) ∼ σij kikj (12)

with the result that the effective long-range diffusivity is

κij = κ0
ij − σij (13)

and

Wj(k) ∼ kiµij . (14)

for some coefficientµij that we now evaluate. We show below that

Wi = [(λ0)−1]imVm(0, k) (15)

whereVm(q, k) is the (Fourier transform of the) vertex function that measures the influence
of a weak external field onG(x, x′). It is calculated below. For smallk we have

Vm(0, k) ∼ knλnm (16)

whereλmn is the effective coupling referred to in the introduction. It follows that for small
k

G̃(k) ∼ [κmnkmkn + ikmλmngn]−1. (17)

The interpretation of this result is that the effective drift is

ue
m = λmngn. (18)

The measurement of the effective drift in a given external field allows us to extract the
effective couplingλij from the simulation.

For the purposes of simulation we assumed that the random fieldφ is Gaussian, of zero
mean and with a two-point correlation function given by

1(x − x′) =
∫

d3q

(2π)3
D(q)eiq·(x−x′) (19)

with

D(q) = (2π)
3
2

k3
0

e−q2/2k2
0 . (20)

With this normalization

〈(φ(x))2〉 = 1(0) = 1. (21)

We shall also concentrate our study on three-dimensional space.
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Figure 1. Vertex diagram. Figure 2. Drift insertion vertex.

Figure 3. One-loop contribution to6. Figure 4. One-loop correction to drift insertion.

3. Graphical rules for perturbation theory

The Feynman rules for the diagrammatic perturbation expansion are essentially the same as
in the isotropic case. We have:

(i) The sum of the inwardly flowing wavevectors at each vertex is zero.
(ii) Each full line carries a factor of 1/κ0

ij kikj .
(iii) Each loop wavevectorq is integrated with a factor d3q/(2π)3.
(iv) Each vertex of the form of figure 1 carries a factorqiλ

0
ij (k + q)j .

(v) Each vertex of the form of figure 2 carries a factor−iujkj .
(vi) Each broken curve carries a factorD(q).

4. One-loop contributions

The one-loop contribution to6(k) is associated with figure 3. It is, according to the
Feynman rules,

6(1)(k) = −
∫

d3q

(2π)3
D(q)

(k + q)iλ
0
ij qj kmλ0

mnqn

(k + q)rκ0
rs(k + q)s

. (22)

The one-loop contribution touiWi(k) is associated with figure 4. The Feynman rules
imply that it has the form

uiWi(k) = −
∫

d3q

(2π)3

(k + q)iλ
0
ij qj (−iuj (k + q)j )kmλ0

mnqn

((k + q)rκ0
rs(k + q)s)2

. (23)

If we compare this result with that for the general vertex at one loop associated with figure 5,
namely

Vi(q, k′) = −
∫

d3q

(2π)3

(k + q)jλ
0
j lqlλ

0
ip(k′ + q)pk′

mλ0
mnqn

(k + q)rκ0
rs(k + q)s(k′ + q)uκ0

uv(k
′ + q)v

(24)

we see immediately that

Vi(0, k) = λ0
ijWj (k). (25)

This result is easily generalized to all orders in perturbation theory. It is equivalent to the
relation used in a previous paper [5].
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Figure 5. One loop correction to vertex.

5. Spatial averages and mean drift

Some insight into the renormalization of the drift coefficient in the isotropic case (λ
(0)
ij =

λ0δij and κ
(0)
ij = κ0δij ) can be obtained by considering a situation in which we allow a

large cloud of particles to equilibriate in a large cubical sample with periodic boundary
conditions. We then disturb the situation by imposing a uniform background drift field
g causing a mean drift in the particle cloud. The average velocity of the particles is
then renormalized relative to the mean local drift because of the lack of uniformity in the
background probability distribution adopted by the particles.

In the absence of a background drift field, the particles adopt a density distribution
P0(x) that yields zero particle current. That is

J = (κ0∇ − λ0∇φ(x))P0(x) = 0. (26)

The solution of this equation is

P0(x) = N exp

{
λ0

κ0
φ(x)

}
(27)

where we will chooseN so thatP0(x) can be viewed as a probability distribution, i.e. such
that ∫

cube
d3x P0(x) = 1. (28)

Here the ratioλ0/κ0 may be interpreted as the effective inverse temperature. For a very
large cube it is acceptable to enforce this equation as an ensemble average. This allows us
to evaluateN as

N =
(

V exp

{
1

2

(
λ0

κ0

)2

1(0)

})−1

(29)

whereV is the volume of the cube.
When an external constant driftg is applied, the system equilibriates with a new

distributionP0 + P1 that satisfies

∇ · (κ0∇ − λ0∇φ(x) − λ0g)(P0(x) + P1(x)) = 0. (30)

It turns out that no change of normalization is required. This leads to the solution, correct
to O(g), for P1,

P1(x) = −λ0

∫
d3x′ G(x, x′)∇P0(x

′) · g (31)

whereG(x, x′) is the Green function for the problem without drift.
At a pointx in a given sample of the medium the velocity of a particle isλ0(∇φ(x)+g)

after averaging over molecular diffusion effects. The driftu of particles in the steady state
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situation with drift can be obtained as a spatial average of this velocity over the large cubical
sample:

u = λ0

∫
d3x (∇φ(x) + g)(P0(x) + P1(x)). (32)

To O(g) we have

ui = λ0

[
δij − λ0

∫
d3x d3x′ (∂iφ(x))G(x, x′)∂jP0(x

′)
]
gj . (33)

In fact it is reasonable now to take the ensemble average of this quantity, with the result

ui = λ0

[
δij − λ0

∫
d3x d3x′ 〈(∂iφ(x))G(x, x′)∂jP0(x

′)〉
]
gj . (34)

To lowest (non-trivial) order inλ0 we can replaceG(x, x′) by G0(x − x′) and use the
identity

〈φ(x)P0(x
′)〉 = λ0

κ0
1(x − x′)/V (35)

to obtain

ui = λ0

[
δij − λ2

0

κ0

∫
d3x G0(x)∂i∂

′
j1(x)

]
gj . (36)

Expressing this in Fourier space we have

ui = λ0

[
δij − λ2

0

κ2
0

∫
d3q

(2π)3
D(q)

qiqj

q2

]
gj . (37)

Taking into account the isotropy of the statistical ensemble that we assume in this case, we
see thatu = λg where

λ = λ0

(
1 − 1

3

λ2
0

κ2
0

1(0)

)
. (38)

This is identical with the one-loop perturbation result of previous work [2–5]. A careful
analysis of the two-loop diagrams confirms the result to this order. This is, of course,
consistent with the RGC result

λe = λ0 exp

{
−1

3

λ2
0

κ2
0

1(0)

}
(39)

discovered previously. From this point of view, then, the renormalization of the effective
drift term comes about because in a steady state the particles adopt, in a given sample, a
non-uniform distribution, appropriate to the sample, and the resulting spatial average of the
local drift is modified relative to the local ensemble average which yields the local mean
value. This should be contrasted with the situation in incompressible flow where the steady
state distribution of particles inevitably remains uniform leading to a spatial average that
coincides with the ensemble average and no renormalization of the drift coefficient [9, 10].
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Table 1. N is the number of modes in a random field. Theoretical values are in brackets.

N λ0 g κe (λe/λ0)

128 1.0 0.05 0.722(2) 0.726(2)
(0.717) (0.717)

256 1.5 0.05 0.470(5) 0.474(2)
(0.472) (0.472)

256 2.0 0.05 0.269(4) 0.266(11)
(0.264) (0.264)

512 2.5 0.05 0.139(5) 0.140(20)
(0.125) (0.125)

6. Simulation of drift in the isotropic case

The simulation technique we have used is that described in [4]. Briefly, it is a direct
integration of the Langevin equation for the problem implemented using a second-order
Runga–Kutta scheme for stochastic differential equations. In table 1 we exhibit the results
of measuring bothκe andλe, for an isotropic situation, over a range of values of the disorder
parameterλ0/κ0. We assumeκ0 = 1 andk0 = 1 throughout.

The continuum construction forφ(x) has been described in previous papers [4–7]. An
important point for the present paper is that the random field is constructed from a set of
N modes and the integrity of the Gaussian property of the statistics of the random field is
dependent on having a sufficiently large value ofN .

The results clearly show the equality of the two renormalization parameters for a wide
range of disorder parameters. This common value is also equal, as was found in previous
work, to the RGC prediction of exp{− 1

3λ2
0/κ

2
0}. There is a slight discrepancy at the higher

values of the disorder parameter. We feel that this is a systematic error in the simulation due
to the limited number of modes incorporated in the random field. Another possible source
of error is that the value of the drift parameter has become so large that O(g2) effects are
influencing the values of the measured quantities. It is also possible that the assumptions
behind the renormalization group calculation may no longer be valid at these values ofλ0.
It is interesting to note that, nevertheless, the equality of the two renormalization factors is
maintained throughout with particular accuracy. We can be reasonably confident, therefore,
of our renormalization group results and the associated Ward identity [5, 6] in this isotropic
case.

7. ‘Ward’ identity

In previous work [5] we suggested a Ward identity as an explanation of the proportionality
of the renormalization of the vertex and diffusivity matrix. In terms of the bulk parameters
this Ward identity simply implied that ifκ0

ij = βλ0
ij , then for the effective bulk parameters

κij = βλij . The identity was verified to two-loop order in perturbation theory. However, in
a sightly different problem (in two dimensions and with a random field where the diffusion
turns out to be scale-dependent and hence anomalous) [9, 10], this Ward identity can be
shown to hold exactly. Moreover, we have recently, given certain extra assumptions, been
able to prove this Ward identity [11]. Here we show that this Ward identity changes form
when the bare vertex and diffusivity matrices are no longer proportional to one another, i.e.
when the FDR is violated. We will only discuss the change at one-loop order since this is
sufficient to demonstrate the breakdown.
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From the formulae of the previous section we see that to one-loop order

∂

∂ki

6(k) = [κ0(λ0)−1]ijVj (k, k) + Ui(k) (40)

where

Ui(k) = −
∫

d3q

(2π)3
D(q)

qrλ
0
riqmλ0

mnkn + qrλ
0
rs(q + k)sqmλ0

mi

(q + k)j κ
0
j l(q + k)l

. (41)

For smallk we see that

kiUi(k) = −
∫

d3q

(2π)3
D(q)

{
2(qsλ

0
rsks)

2

qmκ0
mnqn

− 2qrλ
0
rsqsqnλ

0
mnknqjκ

0
j lkl

(qmκ0
mnqn)2

}
+ O(k4). (42)

It is easy to see that that the right-hand side of this equation vanishes to O(k4) when
κ0

ij ∝ λ0
ij . In general, however, it does not vanish. A simple case to consider is one in

which the statistics of theφ(x)-field are isotropic, the diffusivity has the formκ0
ij = κ0δij

but the drift coefficient retains an anisotropic tensorial structure. We can easily evaluate the
right-hand side of equation (42) to be

kiUi(k) = −21(0)

3κ0
{ 3

5ki [(λ
0)2]ij kj − 1

5λ0
mmkiλ

0
ij kj } + O(k4). (43)

If we define

λ̄0
ij = λ0

ij − 1
3λ0

mm (44)

so thatλ̄0 is the traceless or quadrupole part ofλ0 then we can recast the above equation
in the form

kiUi(k) = −21(0)

3κ0
{ 3

5ki [(λ̄
0)2]ij kj + 1

5λ0
mmkiλ̄

0
ij kj } + O(k4) (45)

that is

kiUi(k) = −21(0)

5κ0
ki [λ̄

0λ0]ij kj + O(k4). (46)

This form of the result makes it clear that when the traceless part of the drift tensorλ̄0

vanishes we return to the situation in which the original Ward identity holds.
For the particular case we are considering the the modified Ward identity implies for

small k the result
∂

∂ki

6(k) = −1(0)

15κ0
{λ0

mmλ0
ij + 2λ0

ilλ
0
lj }kj − 21(0)

3κ0
{ 3

5[(λ0)2]ij kj − 1
5λ0

mmλ0
ij kj } + O(k3). (47)

On the basis of this calculation we do not expect a simple relationship between the
macroscopic diffusivity and the macroscopic drift coefficient. This is confirmed in the
next section by a renormalization group calculation.

8. Renormalization group equations

The breakdown of the Ward identity and the absence of any simple relation between the
effective diffusivity and drift tensors makes it interesting to examine the consequences of
the renormalization group approach to computing the macroscopic parameters. The idea
of this approach is to carry out a partial average of the Green function with respect to
the components of the random fieldφ in small slices of wavevector space. After we have
averaged out all Fourier modes in the random fieldφ with wavevector modulus greater
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than some cut-off value3, we assume that the problem is identical to the original but with
some effectiveκij (3) and an effectiveλij (3). We then compute perturbatively the change
in making a further average over Fourier components with wavevector modulus between
3 and 3 − δ3. The changes inκij and 3ij may be computed exactly to orderδ3 from
the one-loop diagrams in figures 3 and 5 respectively. One then obtains the following
differential equations for the (coupled) renormalization group flow of the two tensors. The
equations for the diffusivity tensor were written down in [5, 6]. The resulting equations are:

dκij

d3
=

∫
d3q

(2π)3
δ(q − 3)D(q)

(qmκmiqnλnj + qmκmjqnλni)qrλrsqs − qmλmiqnλnjqrκrsqs

(qrκrsqs)2

(48)

and

dλij

d3
=

∫
d3q

(2π)3
δ(q − 3)D(q)

qmλmiqnλnjqrλrsqs

(qrκrsqs)2
. (49)

It is clear from these equations that, as mentioned in a previous paper [6], those solutions
satisfying boundary conditions for whichλ0

ij ∝ κ0
ij maintain the the proportionality

λij (3) ∝ κij (3) for all 3 with a constant ratio.
It is, of course, easily checked that the isotropic solutions are those of earlier papers,

namely

κij (3) = κS
ij (3) = κ0 exp

{
−1

3

λ2
0

κ2
0

13(0)

}
δij (50)

and

λij (3) = λS
ij (3) = λ0 exp

{
−1

3

λ2
0

κ2
0

13(0)

}
δij (51)

where

13(0) =
∫

q>3

d3q

(2π)3
D(q). (52)

We can examine solutions near these isotropic solutions that are perturbed by a small
anisotropic change in the local drift tensor. It is no restriction to make this small change
traceless. We then have

κij (3) = κS
ij (3) + ηij

λij (3) = λS
ij (3) + µij

(53)

where

ηij (∞) = 0

µij (∞) = µ0
ij

(54)

with µ0
ii = 0. A perturbative analysis of equations (48) and (49) yields

dηij

d3
= λ0

κ0

∫
d3q

(2π)3
δ(q − 3)D(q)

{
λ0

κ0

2

3
ηij − 3

15

λ0

κ0
(ηδij + 2ηij ) + 2

15
(µδij + 2µij )

}
dµij

d3
= λ2

0

κ2
0

∫
d3q

(2π)3
δ(q − 3)D(q)

{
2

3
µij + 1

15
(µδij + 2µij ) − 2

15

λ0

κ0
(ηδij + 2ηij )

}
.

(55)
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If we introduce a variable 0< s < 1 such that

s =
∫

q<3

d3q

(2π)3
D(q) (56)

and impose the allowed constraint thatη = ηii = 0 andµ = µii = 0 we find

dηij

ds
= 4

15

λ2
0

κ2
0

ηij + 4

15

λ0

κ0
µij

dµij

ds
= 12

15

λ2
0

κ2
0

µij − 4

15

λ3
0

κ3
0

ηij .

(57)

These equations are easily integrated and yield the result

κij = κ0 exp

{
−1

3

λ2
0

κ2
0

}
δij − 4

15

λ0

κ0
exp

{
− 8

15

λ2
0

κ2
0

}
µ0

ij

λij = λ0 exp

{
−1

3

λ2
0

κ2
0

}
δij +

(
1 − 4

15

λ2
0

κ2
0

)
exp

{
− 8

15

λ2
0

κ2
0

}
µ0

ij .

(58)

It follows that

(λκ−1)ij = λ0

κ0

(
δij + 1

λ0
exp

{
−1

5

λ2
0

κ2
0

}
µ0

ij

)
. (59)

For this near-isotropic case at least, we see that the proportionality of the macroscopic drift
and diffusivity tensors is restored exponentially as the renormalization process takes place.
However, we should emphasise here thatλij (3) is also the effective coupling constant
to the random field after we have averaged out the fluctuations in the fieldφ to wave
vector modulus3. That is, we have effectively been coarse-graining the system. Here we
see that the FDR is being exponentially restored upon coarse-graining and that deviations
from the FDR appear to be reduced upon coarse-graining. It is a great advantage of the
renormalization group method that, in addition to giving fairly accurate quantative results,
it also gives us a physical picture of what is happening in the system when we examine
it at different scales. Hence one finds an example of a system which may violate the
FDR slightly at one scale but obeys it rather well at large scales. Indeed, most physical
models impose the FDR as a prerequisite in order to obtain a model that, on the large scale,
obeys Gibbs statisitics when in equilibrium. We see here that to obtain a model which is
Gibbsian when viewed over suitably large scales it is not strictly necessary to make such
an assumption.

9. Numerical simulation in the anisotropic case

We tested the above results from the renormalization group calculation against a simulation
for which the asymmetric local drift tensor is diagonal in the coordinate basis with elements

µ0 =
( −α/2 0 0

0 −α/2 0
0 0 α

)
. (60)

Because of the axial symmetry of the local drift tensor the same property ensures that the
effective diffusion and drift tensors will have the form

κe =
( κ⊥ 0 0

0 κ⊥ 0
0 0 κ‖

)
and λe =

( λ⊥ 0 0
0 λ⊥ 0
0 0 λ‖

)
. (61)
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Table 2. Number of modes in random field is 256. Theoretical values are shown in brackets.

λ0 α κ‖ κ⊥ λ‖ λ⊥

1.0 0.2 0.701(3) 0.735(3) 0.798(5) 0.660(5)
(0.685) (0.732) (0.803) (0.674)

1.0 0.1 0.698(3) 0.727(2) 0.770(6) 0.687(5)
(0.701) (0.724) (0.760) (0.695)

1.0 −0.1 0.730(5) 0.712(2) 0.672(5) 0.730(5)
(0.732) (0.709) (0.673) (0.737)

1.0 −0.2 0.764(4) 0.701(3) 0.622(6) 0.772(7)
(0.748) (0.701) (0.630) (0.760)

The results of the numerical simulation for certain values ofλ0 and various values ofα are
shown in table 2.

The results, with some small discrepancies for the two cases with|α| = 0.2, are in good
agreement with the predictions of the the renormalization group calculations expressed in
equations (58). It is not unreasonable that an asymmetry parameter as large as 20% is
the limit of applicability of the simple perturbation approach in the previous section. To
check the results by simulation in finer detail for smaller values of|α| requires higher
statistical accuracy than can easily be achieved. Our simulations typically involved 256
particles in 256 velocity fields and required 100–200 processor hours. Nevertheless, we can
conclude with reasonable confidence that the RGC has produces an accurate result even in
the asymmetric case. It may be that an important condition for the success of the RGC is
the isotropy of the random field statistics.

10. Conclusions

In this paper we have confirmed the importance of the role of drift in the set of effective
parameters that govern the long-time behaviour of a diffusion process in which a particle
moves subject to molecular diffusion and the influence of the gradient of a random scalar
field. Another way of expressing this is to say that in addition to the the diffusion process
itself, it is important to consider the effect on the system of long-range external fields and
the strength with which they are coupled to the system. We have exploited this effect by
computing and measuring the mean drift in a simulation induced by an external field of
constant gradient. The results, however, must also be relevant to all external fields of long
range. The conclusion, arrived at in previous work [2–5], and confirmed in this simulation,
is the result that the effective drift and diffusivity parameters are renormalized relative to
their local values by identical factors in the isotropic case.

We showed how the renormalization of the drift parameter could be interpreted as a
result of biasedspatial averaging effects due to the density distribution adopted by particles
passing through the medium represented by the random field under the influence of an
external field of constant gradient.

We also examined a situation in which the isotropy is broken by giving the drift tensor
an axisymmetric form. We confirm that the Ward identity suggested in previous work as
an explanation for the equality of the diffusion and drift renormalization factors is indeed
broken in lowest-order perturbation theory. We do not expect a simple relationship between
effective diffusion and drift in this case. This is confirmed at a theoretical level by using
the renormalization group approach in a near-symmetric situation. The predictions of the
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theoretical calculation are verified quite well by the results of a simulation. The implication
is that the renormalization group calculation will work reasonably well when the statistics
of the random scalar field are isotropic. Given this, we have found that, for the systems
we have considered which have only perturbatively small deviations from the FDR at the
microscopic level, the coarse-graining induced by averaging out fluctuations of the random
field tends to restore the FDR for bulk quantities. It is plausible that the restoration of
FDR after coarse-graining happens quite generally, though we have demonstrated it only
in a special case. In renormalization group language, we would say that there is a range
of theories which have microscopic violations of the FDR that flow towards coarse-grained
theories obeying the FDR. It would be very interesting to investigate this situation further
and identify systems that violate the FDR at the microscopic level which flow, under the
influence of the renormalization group transformation, to bulk systems that do and do not
satisfy the FDR, systems that have a variety of ‘fixed points’ with different basins of
attraction in the microscopic parameter space.
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